Nauki przyrodnicze
MENU
STRONA GŁÓWNA
Przyroda polska
Zdjęcia natury
Fizyka teoretyczna
Biologia teoretyczna
Biochemia
Biologia molekularna
Ornitologia
Rośliny Polski
Botanika
Zoologia
Internetowe ZOO
Związki czynne roślin
Pierwiastki
chemiczne
Chemia nieorg.
Chemia organiczna
Ciekawostki
biologiczne
Ciekawostki
fizyczne
Ciekawostki
chemiczne
Ciekawe książki
Ciekawe strony www
Słownik

INFO
INFO O AUTORZE
KONTAKT

Do działu: FIZYKA TEORETYCZNA →

Ciemna materia

W 1922 roku rosyjski fizyk Aleksander Friedman znalazł rozwiązania ogólnej teorii względności (OTW) dla Wszechświata jednorodnie wypełnionego materią. Okazało się, że OTW nie daje rozwiązań przedstawiających statyczny, niezmieniający się Wszechświat, w który wierzył Einstein, ale są one dynamiczne - ukazują Wszechświat rozszerzający się.

Rozwiązania Friedmana można było podzielić na trzy kategorie:

1. Gęstość materii Wszechświata mniejsza od tzw. gęstości krytycznej – geometria Wszechświata o krzywiźnie ujemnej i jest on otwarty, nieskończony i będzie wiecznie się rozszerzał.

2. Gęstość materii Wszechświata równa tzw. gęstości krytycznej – geometria Wszechświata o krzywiźnie zerowej (euklidesowa, płaska) i jest on otwarty, nieskończony i będzie wiecznie się rozszerzał.

3. Gęstość materii Wszechświata większa od tzw. gęstości krytycznej – geometria Wszechświata o krzywiźnie dodatniej i jest on zamknięty i skończony (jak np. sfera) i jego rozszerzanie się nie będzie trwać wiecznie. Po skończonym czasie zacznie się on kurczyć.

Z wyników, jakie uzyskał Friedman można było wywnioskować, że globalna geometria każdego Wszechświata ma ścisły związek z gęstością materii w nim i to od niej będzie zależała jego ewolucja i końcowy los.

Nasuwało się więc pytanie: jak będzie w przypadku naszego Wszechświata? Odpowiedź na nie zależała od tego, czy jesteśmy w stanie oszacować gęstość materii w nim, by porównać ją z gęstością krytyczną.

Niestety, sprawa jest skomplikowana, bo sama wartość gęstości krytycznej (ρc) zależy od stałej Hubble'a charakteryzującej szybkość rozszerzania się Wszechświata. Oto wzór:

ρc = 3 H2 / 8πG

gdzie: ρc – gęstość krytyczna, H – stała Hubble'a, G – stała grawitacyjna.

Trudność polega na tym, że konkretna wartość tej stałej nie jest nam znana. Znamy ją tylko w najbardziej prawdopodobnym zakresie 65 do 79 km/s/megaparsek, więc gęstość krytyczną znamy też tylko w zakresie 8 · 10-30 do 1,2 · 10-29 g/cm3.

Jeśli przyjmiemy najbardziej prawdopodobną wartość gęstości krytycznej, to okaże się, że materia świecących gwiazd daje wkład zaledwie 1% do tej wartości. Czyżby nasz Wszechświat miał globalnie krzywiznę ujemną i był otwarty i skazany na wiecznie rozszerzanie się?
Teoretykom i praktykom fizyki nie podoba się powszechnie taka wizja zważywszy, że trudno wyobrazić sobie jak Wszechświat, który zaczął się w nieskończenie gęstym punkcie, stał się nagle nieskończony.

Nie można jednak uprawiać nauki dopasowując ją do naszych upodobań. Jeśli marzenie o Wszechświecie zamkniętym miało zostać potwierdzone, to trzeba było znaleźć kandydatów na pozostałe ponad 99% wartości gęstości krytycznej. Zakładano, że ta "brakująca materia" nie jest widoczna dlatego, że nie świeci. Dlatego nazwano ją ciemną materią. Jedyną oznaką jej obecności jest oddziaływanie grawitacyjne.

Na kandydatów na ciemną materię postulowano brązowe karły (obiekty o masie mniejszej niż 0,08 masy Słońca, zbyt lekkie by świecić), planety, gwiazdy neutronowe i czarne dziury.

Z dobrze potwierdzonych teorii nukleosyntezy i pomiarów obfitości pierwiastków we Wszechświecie wynika jednak, że zwyczajna materia (barionowa) wchodząca oprócz gwiazd właśnie w skład planet, brązowych karłów, gwiazd neutronowych i czarnych dziur, nie może stanowić więcej niż 10% gęstości krytycznej.

Nadal więc pozostaje problem brakujących 90%. Wysuwane są hipotezy postrzegające w ciemnej materii neutrina o niezerowej masie spoczynkowej, egzotyczne cząstki przewidywane przez teorię supersymetrii (supersymetryczni partnerzy wszystkich znanych nam cząstek), a także aksjony – cząstki przewidywane przez teorię superstrun.

Pytanie: "czym jest ciemna materia mająca stanowić 90% materii naszego Uniwersum?" pozostaje nadal otwarte, choć ostatnie badania coraz mocniej potwierdzają jej istnienie. Rejestrowane prędkości obrotu gwiazd na obrzeżach naszej galaktyki są ponad 3 razy wyższe niż wskazuje na to ilość widocznej w niej materii. Jako, że owa prędkość rotacji jest proporcjonalna do pierwiastka z masy galaktyki, to masa musi być 9-10 razy większa niż widać.

MACIEJ PANCZYKOWSKI

 Autor wortalu: Maciej Panczykowski, Copyright © 2003-2018 by Maciej Panczykowski