Nauki przyrodnicze
MENU
STRONA GŁÓWNA
Przyroda polska
Zdjęcia natury
Fizyka teoretyczna
Biologia teoretyczna
Biochemia
Biologia molekularna
Ornitologia
Rośliny Polski
Botanika
Zoologia
Internetowe ZOO
Związki czynne roślin
Pierwiastki
chemiczne
Chemia nieorg.
Chemia organiczna
Ciekawostki
biologiczne
Ciekawostki
fizyczne
Ciekawostki
chemiczne
Ciekawe książki
Ciekawe strony www
Słownik

INFO
INFO O AUTORZE
KONTAKT

Do działu: BIOCHEMIA →

Cykl Krebsa

Cykl Krebsa, czyli cykl kwasu cytrynowego to cykl przemian metabolicznych, który przebiega w komórkach wszystkich organizmów oddychających tlenem. Został on odkryty w 1937 roku przez Hansa Krebsa i to od nazwiska tego biochemika bierze się jego nazwa.

Cykl Krebsa u eukariontów zlokalizowany jest wewnątrz mitochondriów - ważnych organelli komórkowych (u prokariontów przebiega w cytoplazmie). Składa się on z 9 etapów, katalizowanych przez 8 odrębnych enzymów (dwa etapy katalizuje ten sam enzym).
Zadaniem cyklu Krebsa jest utlenić związek o nazwie: acetylokoenzym A (acetylo-CoA) do 2 cząsteczek dwutlenku węgla (CO2), a pozyskaną w tym procesie energię ulokować w chemicznych nośnikach energii: GTP, NADH i FADH2.

Sumaryczny zapis cyklu Krebsa to:

acetylo-CoA + GDP + Pi + 3NAD+ + FAD + 2H20 → koenzym-A + GTP + 3NADH + 3H+ + FADH2 + 2CO2

Podczas jednego, pełnego obrotu cyklu Krebsa powstają 3 cząsteczki NADH, jedna cząsteczka FADH2 i jedna cząsteczka GTP. Najbardziej wszechstronnym nośnikiem energii w komórce jest ATP. GTP jest łatwo zamieniany na ATP przez odpowiedni enzym. Natomiast NADH i FADH2 biorą udział w mitochondrialnym łańcuchu oddechowym - przemianie, dzięki której możliwa jest zamiana energii tych zredukowanych związków na energię wiązań ATP. Niezbędnym uczestnikiem łańcucha oddechowego jest tlen.

Jedna cząsteczka NADH pozwala wyprodukować 3 cząsteczki ATP, a jedna cząsteczka FADH2 - 2 cząsteczki ATP. Nietrudno więc obliczyć, że jeden pełny obrót cyklu Krebsa pozwala wytworzyć 12 cząsteczek ATP - uniwersalnego nośnika energii dla komórki (3 x 3 + 1 x 2 + 1 = 12).

Schemat całego cyklu przedstawiono poniżej (z pominięciem enzymów):

cykl Krebsa

Acetylokoenzym A jest cząsteczką centralną dla metabolizmu tlenowców. Jest on produktem katabolizmu wielu aminokwasów, cząsteczką końcową tzw. beta-oksydacji kwasów tłuszczowych, a także związkiem, w który przeprowadzany jest pirogronian - produkt glikolizy monocukrów.
A więc to dzięki tej "zbiorczej" cząsteczce, komórka może uzyskiwać energię zarówno z aminokwasów (składniki białek), jak i z tłuszczów i cukrów.

Zauważmy, że drugim substratem, do którego przyłączany jest acetylo-CoA na początku cyklu Krebsa, jest szczawiooctan. Ale mamy tu do czynienia z cyklem, czyli szczawiooctan jest także jednym z produktów końcowych. Cały cykl bierze zatem udział w utlenianiu acetylokoenzymu A, ale pozostaje on niezmienny dzięki swojej cykliczności (koniec przechodzi w początek). Jeśli coś uczestniczy w reakcji, a mimo to nie zmienia się, to jest to katalizator. A więc możemy traktować cały cykl Krebsa jak jeden, złożony katalizator.

MACIEJ PANCZYKOWSKI

 Autor wortalu: Maciej Panczykowski, Copyright © 2003-2018 by Maciej Panczykowski